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A stress analysis model for composite coaxial
cylinders

G. C. DAVIES, D. M. BRUCE
Silsoe Research Institute, Wrest Park, Silsoe, Bedfordshire, MK45 4HS, UK

An analytical model describing the elastic response of a system of coaxial thick-walled

cylinders in contact is presented. The materials from which the cylinders are constructed

must exhibit orthotropic elasticity. The loading can be uniaxial tension, torsion or

internal pressure. The model allows inter- and intralaminar stresses to be determined.

Examples of applications include pipes and light weight drive shafts reinforced with a

helical winding, composite pressure vessels and single cells from fibrous plants such as

flax and hemp.
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1. Introduction
An advantage of using composite materials is that the
materials as well as the structures can be designed to
accommodate the applied load. Such design requires
an understanding of the stress and of the resulting
strains and displacements produced under loading.
The simplest structures are axisymmetric shells with
fibres wound in helices at angles of $h to the axis of
symmetry, which can be produced in an automatic
process. High strength, low weight and corrosion re-
sistance have led to the use of such components in
0022—2461 ( 1997 Chapman & Hall
many load bearing applications. Examples include air-
craft and ship components, pressure vessels, reinforced
piping and lightweight drive shafts.

The current study grew out of a model describ-
ing the states of stress and strain in a single plant
fibre. There has recently been substantial interest
in such fibres due to their attractive tensile proper-
ties (for example, the stiffness and strength of flax
fibres are comparable to those of E-glass) and their
renewability. Increased understanding of the mechan-
ical behaviour of such fibres is necessary before they
can be used with confidence as structural components.
Structurally, these fibres can be considered as a num-
ber of thick-walled, concentric cylinders in contact.
The model derived is therefore appropriate to both
certain plant fibres and to more conventional engin-
eering structures. Plant fibres are an order of
magnitude stiffer and stronger than conventional ther-
moset and thermoplastic organic matrices, and have
a similar cost [1]. This opens the possibility of rein-
forcing recycled matrix materials with plant fibres to
regain strength lost during recycling. Plant fibres are
safer to handle than glass fibres and can be disposed of
at the end of their life cycle by burning. This is in
contrast to glass fibres, which are generally disposed
of as land-fill.

There has been a significant amount of work done
on the elastic behaviour and failure of thin-walled
filament-wound tubes. Spencer [2] described a
method using axial and torsional vibration response
for the measurement of axial and shear moduli of
thin-walled shafts. Good agreement between theory
and experiment was obtained, though dimensional
and material data for the tubes used was not provided.
Cazeneuve et al. [3] extended laminated plate theory
to take account of the fact that filament winding in $h
crossed layers produces a fabric, rather than suc-
cessive uni-directional layers crossed at angles #h and
!h. Introducing a gradual reduction of individual
layer moduli in the orthotropic plate model permitted
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the accurate prediction of the linear and non-linear
response of thin-walled Kevlar/epoxy and carbon/
epoxy 90/$h/90 tubes. Soden et al. [4] presented an
experimental study showing the effect of winding
angle on the strength and deformation of reinforced
tubes under internal pressure and axial loading. Fila-
ment-wound E-glass fibre reinforced epoxy-resin
tubes of 100 mm diameter and 1 mm thickness were
used. Stress—strain curves under three different types of
loading demonstrated the effect of the winding angle
on the elastic constants and on non-linear stress—
strain behaviour. It was found that the magnitude
of the elastic constants varied with winding angle as
predicted by laminate theory.

Thick-walled filament wound pipes are readily
available. Because the state of stress in these laminates
under loading is three-dimensional, a three-
dimensional stress—strain analysis is needed, which in
turn requires three-dimensional mechanical proper-
ties. Al-Khalil and Soden [5] presented an analysis for
determining theoretical values for the elastic constants
needed for the three-dimensional stress analysis of
angle-ply laminates, with an emphasis on filament-
wound tubes. Effective elastic constants were cal-
culated from the properties of uni-directional fibre-
reinforced laminates for glass/epoxy, Kevlar/epoxy
and carbon/epoxy composites.

Through-thickness stresses are particularly impor-
tant as they can cause delamination. The stress distri-
bution within a four-layer structure composed of fibre,
coating, matrix and infinite surrounding composite
received attention by Mikata and Taya [6]. The stres-
ses in such a fibre when subjected to thermo—mechan-
ical loading can cause cracking. Their model was later
extended by Warwick and Clyne [7] to allow an outer
layer of finite radius and generalized to any number of
layers. Application of this model is limited to cases
where the materials from which the coaxial compo-
nents are made are isotropic in a plane normal to the
cylinder axis.

Rosenow [8] obtained stress—strain responses for
filament wound pipes constructed from polyester
resin and glass fibres wound at six different winding
angles. Biaxial loading, hoop pressure loading and
tensile loading were used. Theoretical stress—strain
responses, assuming that the radial stress was small
and could be ignored, were compared to the experi-
mental data. Agreement between theory and experi-
ment was reasonable. The effect of including the radial
stress in the calculations is investigated later in this
paper.

2. The model
The theory presented here describes the stress analysis
of structures composed of thick-walled concentric cy-
linders. Each cylindrical layer is made from an ortho-
tropic material with a given filament winding angle,
which can be different in each layer. An example
structure is given in Fig. 1. Three layers are shown,
but the analysis supports an arbitrary number. As
with a model presented by Tang [9] describing the
stress state in a single wood fibre, this model is based
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Figure 1 Example structure.

on theory by Lekhnitskii [10]. This theory describes
the response of a homogeneous hollow cylinder
having cylindrical anisotropy to an axially symmet-
ric distribution of stress. The model here is an exten-
sion of [9] in that the effect of internal or external
pressure (with ends capped or uncapped) and tor-
sional loading can be included in addition to uniaxial
loading. The torque required to prevent a helically
reinforced structure from rotating can also be cal-
culated. This may be significant in the case of helically
wound plant fibres in a matrix in that the tendency for
such fibres to rotate must be suppressed by interfacial
shear stresses, which could contribute to fibre—matrix
interfacial failure.

To perform the analysis, the elastic properties of the
constituent composite layers must be determined.
These may be already known, or samples of the mater-
ial may be available for testing. If the properties of
a material are difficult to obtain then it is possible to
estimate them from the properties of its components.
An example is a plant cell wall which has undergone
secondary thickening, for simplicity considered to
comprise cellulose fibres in a hemicellulose matrix.
Values for the elastic properties of these components
are available in the literature, so an estimate of the
properties of the cell wall may be made.

Once the properties of the composite are deter-
mined for a given angle of fibre reinforcement, they
can be calculated for any other angle using the tensor
manipulation outlined in Appendix A. Thus, given the
material properties of the components, a structure



comprising concentric cylinders each made from dif-
ferent materials and with different winding angles can
be analysed.

The analysis is performed using linear elasticity
theory and physically apparent boundary conditions
of stress and displacement. A set of simultaneous
equations is developed which can be solved using
matrix methods outlined in Appendix B. Constants
determined by the solution of these equations are then
used to obtain explicit formulae for stress, strain and
displacement.

3. Prediction of properties of the
composite

There have been three different approaches adopted in
estimating the properties of a composite material from
the properties of its components. Bounding calcu-
lations have been used to establish, with varying de-
grees of complexity, upper and lower values of the
elastic constants [11, 12]. Another method which can
be used, with considerable computational demands, is
finite element analysis [13]. Finally, analytical
methods have been proposed which give exact solu-
tions [14].

In this paper, the bounding method of Ward and
Wilczynski [12] is used because it is computationally
straightforward and gives quite close upper and lower
bounds for all the elastic constants. These predictions
were found to be close to those produced by more
complex models. As with much other work [14, 15],
Ward and Wilczynski’s model requires that the fibres
and matrix be either isotropic or transversely iso-
tropic, leading to composite properties which are also
transversely isotropic with respect to the material di-
rections.

4. Examples
Three examples of the application of the theory are
given below. At a glance it may seem that a glass fibre
reinforced pipe (GRFP), a single plant fibre cell and
a composite drive shaft have little in common. Each
however has a structure which can be modelled with
the theory given here.

4.1. GFRP tubes under biaxial pressure and
axial loading

Experimental data from [8] is re-analysed here to
determine the effect of including the radial stress in
the calculations. In the absence of detailed speci-
men information from [8] the thickness of the
anti-wicking barrier has been estimated from the
area density of the mat used to construct it and
the densities of its components. The structural layers
have been assumed to be of equal thicknesses
and arranged as in Table I. It is accepted that making
such assumptions about the structure will affect the
output from the model. However, the model is not
especially sensitive to the detailed structure and so
errors resulting from incorrect assumptions should be
small.

The response to internal pressure of a GFRP pipe
with a winding angle of 30°, is shown in Figs 2 and 3.
Fig. 2 contains the original experimental data along
with the results of the calculation by Rosenow and the
results of this model. The convex shape of the experi-
mental data is due to departures from linearity; it is
not intended to model this effect. The theoretical lines
should thus be compared to the initial part of the
experimental curve which is approximately linear.
Agreement of either theoretical line with the experi-
mental data for small strains is reasonable. The model
including the effect of radial stress predicts hoop
strains of 8% less and axial strains of 28% greater
than does the model due to Rosenow. The calculated
variation of the hoop stress, axial stress, radial stress
and hoop/axis shear stress through the wall thickness
is shown in Fig. 3. Peak values of the radial and hoop
stresses both occur at the inner surface. The peak
value of the hoop stress in the inner load bearing layer
TABLE I GFRP data used in the model

Structure

Layer Inner radius Outer radius Area Winding angle Proportion Proportion
(mm) (mm) (%) (degrees) fibre matrix

Anti-wick layer 25.4 25.7 3.9 random 0.38 0.62
1 25.7 27.6 29.9 15, 30, 45, 60 0.38 0.62
2 27.6 29.5 32.0 !15,!30,!45,!60 0.38 0.62
3 29.5 31.4 34.2 15, 30, 45, 60 0.38 0.62

Properties of components

E
33

E
11

G
13

G
12

m
13

m
12

Reference
(GPa) (GPa) (GPa) (GPa)

Glass fibre 77.2 77.2 30.9 30.9 0.25 0.25 [8]
Matrix 2.41 2.41 2.41 2.41 0.35 0.35 [8]

Properties of the composite along principal directions
(average values calculated from Reference [12])

Sheath 15.9 15.9 5.6 5.6 0.43 0.43
Layers 1—3 30.8 7.3 3.1 3.1 0.31 0.2
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Figure 2 GFRP pipe (Table I) with a winding angle of 30° under
internal pressure, producing biaxial loading. Comparison of theor-
etical models and experimental data. (e· ) experimental hoop strain,
test 1; (#) experimental hoop strain, test 2; ()) experimental axial
strain, test 1; (]) experimental axial strain, test 2, (- -n- -) calculated
hoop strain (Rosenow); (-#]-) calculated hoop strain (this model);
(--e· - -) calculated axial strain (Rosenow) and (- -#- -) calculated
axial strain (this model).

Figure 3 GFRP pipe (Table I) with a winding angle of 30° under
internal pressure, producing biaxial loading. Predicted through-
thickness stresses for an average hoop stress of 40 MPa. (—e——)
radial stress; (- -#- -) hoop stress; (- -K- - -) hoop axial shear stress
and (- -]--) axial stress.

(as opposed to the anti-wicking layer) is approxim-
ately five times that of the peak radial stress.

As the winding angle is altered, the behaviour of the
tube changes. For a tube with a 60° winding angle
under internal pressure, experimental data along with
the theoretical prediction, due to Rosenow and of this
model are given in Fig. 4. It is seen that the hoop and
axial strains are both positive, though the predictions
of the two models are significantly different.
Rosenow’s model predicts a smaller hoop strain and
a substantially larger axial strain; it is this model
which best fits the experimental data.

Fig. 5 shows the response of a GFRP pipe with
a winding angle of 45° to uniaxial tension. The
two theoretical lines agree well with the experi-
mentally measured hoop strain and predict almost
identical strains. However, the predicted axial strains
5428
Figure 4 GFRP pipe (Table I) with a winding angle of 60° under
internal pressure, producing biaxial loading. Comparison of theor-
etical models and experimental data. (e· ) experimental hoop strain,
test 1; (#) experimental hoop strain, test 2; ()) experimental axial
strain, test 1; (]) experimental axial strain, test 2; (--n- -) calculated
hoop strain (Rosenow); (-#]-) calculated hoop strain (this model);
(--e· - -) calculated axial strain (Rosenow) and (- -#- -) calculated
axial strain (this model).

Figure 5 GFRP pipe (Table I) with a winding angle of 45° under
uniaxial tension. Comparison of theoretical models and experi-
mental data. (e· ) experimental hoop strain, test 1; (#) experi-
mental hoop strain, test 2; ()) experimental axial strain, test 1; (])
experimental axial strain, test 2; (--n- -) calculated hoop strain
(Rosenow); (- -]- -) calculated hoop strain (this model); (--e· - -)
calculated axial strain (Rosenow) and (- -#- -) calculated axial strain
(this model).

are significantly different, with the new model predic-
ting a strain of 28% less than that due to Rosenow’s
model. The experimental data (for small strains) lies
between these two lines. Calculated stress variations
through the thickness are shown in Fig. 6.

The behaviour under uniaxial tension of a GFRP
pipe with a winding angle of 15° is given in Fig. 7. The
model due to Rosenow fits the experimental data best,
with the new model predicting significantly greater
hoop and axial strains. The calculated variation of
axial modulus with winding angle is shown in Fig. 8.
This theory acceptably fits the limited data available
from reference [8].



Figure 6 GFRP pipe (Table I) with a winding angle of 45° under
uniaxial tension. Predicted through-thickness stresses for an aver-
age axial stress of 40 MPa. (e) radial stress; (#) hoop stress; (K)
hoop axial shear stress and (]) axial stress.

Figure 7 GFRP pipe (Table I) with a winding angle of 15° under
uniaxial tension. Comparison of theoretical models and experi-
mental data. (e· ) experimental hoop strain; (#) experimental axial
strain; (- -)- -) calculated hoop strain (Rosenow); (- -]- -) calculated
hoop strain (this model); (--n- -) calculated axial strain (Rosenow)
and (-#]-) calculated axial strain (this model).
Figure 8 Variation in axial modulus with winding angle for GFRP
pipe (Table I). ( — ) calculated modulus; (e· ) 15° pipe and (#) 45°
pipe.

4.2. Application to single flax fibre cells
There is substantial interest in the engineering proper-
ties of fibrous crops such as flax and hemp. The
renewability of naturally occurring fibres is clearly an
attraction, but their variability can cause problems in
maintaining consistent mechanical properties of struc-
tures. A greater understanding of these mechanical
properties is required before they can be properly
designed. Properties of single flax fibre cells are given
in Table II.

Single flax fibres are typically between 25—30 mm
long and 14—30 lm in diameter [16]. The cell wall
mainly comprises cellulose and hemicellulose, with
small quantities of pectin and lignin. The cellulose and
hemicellulose combine in the cell wall to form a micro-
fibrilar structure. Within the cell wall the microfibrils
are arranged in layers (lamellae). The angles of the
microfibrils to the axis of the cell are different in each
lamella. There are three such layers, known as S1, S2
and S3, surrounding a hollow lumen. All these layers
have undergone the process of secondary-thickening,
with the S2 layer being structurally dominant. The
TABLE II Flax data used in the model

Structure

Layer Inner radius Outer radius Area Winding angle Proportion Proportion
(lm) (lm) (%) (degrees) fibre matrix

S1 3.2 4.5 10 !30 0.793 0.207
S2 4.5 9.5 80 6.5 0.793 0.207
S3 9.5 1.0 10 !30 0.793 0.207

Properties of components

E
33

E
11

G
13

G
12

m
13

m
12

Reference
(MPa) (MPa) (MPa) (MPa)

Cellulose 134 27.2 6.60 4.40 0.1 0.04 [18]
Hemicellulose 2 — 0.769 — 0.3 — [18]

Properties of the composite along principal directions
(average values calculated from Reference [12])

Cell wall 81.2 7.77 2.17 3.49 0.022 0.113
(all layers)
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Figure 9 Single flax fibre under an applied axial stress of 1 GPa
(Table II). Predicted through-thickness (e) radial, (#) hoop and
(K) hoop—axial shear stresses.

winding angle in the S1 and S3 layers is in the same
sense and is taken to be at an angle of 30° to the fibre
axis. The angle in the S2 layer is in the opposite sense
and is typically around 6.5° [17]. For the sake of
simplicity and in the absence of more accurate data, it
is assumed that all three layers are compositionally
identical.

The variation of the calculated radial, hoop and
hoop-axial shear stresses through the wall thickness of
a single fibre cell under a uniaxial stress of 1 GPa is
shown in Fig. 9. The peak value of the shear stress
occurs between the S1 and S2 layers and is 6.7% of the
average axial stress. The peak value of the hoop stress
occurs between the S2 and S3 layers and is 6.3% of the
average axial stress. The radial stress is smaller and
peaks at 0.4% of the axial stress within the S2 layer.

4.3. Composite tubes to transmit torque
Driveshafts made from composite materials have
some significant advantages over those made from
5430
metals. They exhibit a higher specific stiffness,
allowing components to be lighter and increasing
the critical speed for whirling. This in turn reduces
the number of bearings necessary [19], thus reduc-
ing fuel consumption. At the manufacturing stage,
fine tuning of the driveshaft properties is possible
in a manner which is not possible using iso-
tropic materials such as metals. For example, use
of composite shafts allows the torsional spring rate
to be altered independently of the diameter of the
shaft. Properties of an example shaft are given in
Table III.

The structure of the shaft will affect both its stiff-
ness (torsional and axial) and the stress distribution
within it. The variation of radial, hoop and hoop-axial
shear stresses through the wall thickness due to an
imposed axial torque of 1000 Nm for a winding angle
of 45° is given in Fig. 1a. The calculated variation of
torsional stiffness with winding angle is given in
Fig. 11.

Figure 10 Response of CFRP shaft (Table III) to an applied torque
of 1000 Nm. (e) Radial, (#) hoop and (K) hoop—axial shear stress
as a function of radius for a winding angle of 45°.
TABLE III CFRP tube data used in the model

Structure

Layer Inner radius Outer radius Area Winding angle Proportion Proportion
(mm) (mm) (%) (degrees) fibres matrix

1 7.00 9.00 18.2 #45 0.4 0.6
2 9.00 11.0 22.7 !45 0.4 0.6
3 11.0 13.0 27.3 #45 0.4 0.6
4 13.0 15.0 31.8 !45 0.4 0.6

Properties of components

E
33

E
11

G
13

G
12

m
13

m
12

Reference
(GPa) (GPa) (GPa) (MPa)

Carbon fibre 300.0 300.0 115.4 115.4 0.3 0.3 [20, p. 31]
Epoxy 4.00 — 1.48 — 0.35 — [20, p. 6]

Properties of the composite along principal directions
(average values calculated from Reference [12])

Composite layers 181.6 23.2 5.71 10.34 0.313 0.1242



Figure 11 Calculated torsional stiffness of CFRP shaft (Table III)
as a function of the fibre winding angle.

5. Conclusions
An analysis of the elastic response of a system of
thick-walled, concentric coaxial cylinders has been
presented. Including the radial stress in the analysis
adds significantly to the complexity of the model.
Using the model to re-analyse previously obtained
data on the behaviour of glass fibre reinforced pipes
under biaxial and uniaxial loading indicates a variable
fit with experimental data and a previous model. This
suggests that the influence of the radial stress should
not always be ignored. The stress variations through
the wall thickness of thick-walled cylinders are signifi-
cant and the peak stress can be significantly greater
than the mean stress. This has implications for the
criteria used to design such structures.

Appendix A. Elastic constants and
rotation

A.1. The compliance matrix for an
orthotropic material

In three dimensions for an elastic body with ortho-
tropic symmetry there are nine independent elastic
coefficients. The compliance matrix referred to the
axes of symmetry is given by [21]:
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A.2. Off-axis loading of a unidirectional
composite

Composite materials are not always conveniently ar-
ranged with the fibre axis co-linear with the direction
of loading. Such an arrangement gives good tensile
properties along the fibre direction but poor stiffness
and strength perpendicular to this. Thus in practice,
both in natural and man-made structures, the fibres
are arranged such that the loading is off-axis. It is
useful to define a compliance matrix for an arbitrary
angle of rotation between the direction of loading and
the fibre axis.

Consider a state of stress r referred to a set of axes
(r, h, z). This can be represented in an alternative (or-
thogonal) set of axes (1, 2, 3) through multiplication by
the transformation matrix T :

r123"Tr
3h;

(A2)

A similar transformation is used to transform strain
between axes. In this case:

e6 123"Te6
3h;

(A3)

The terms e
123

are related to e6 123 by:

e123"R . e6
123

(A4)
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The stresses and strains written out in full are:
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For a rotation about the r axis by an angle a, equation
(A2) becomes:
r
11

r
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r
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r
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r
13

r
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A.3. Transformation of the compliance
matrix

Define a compliance matrix S relating strain to stress
in the (1, 2, 3) axes such that:

e
123

"Sr
123

(A11)

substituting for r
123

from Equation (A2):

e
123

"STr
3h;

(A12)

premultiplying both sides of Equation (A3) with T~1

and substituting e6
123

from Equation (A4) gives:

e6
3h;

"T~1R~1e
123

(A13)

The strain in (r, h, z) co-ordinates is therefore

e
3h;

"RT~1R~1STr
3h;

(A14)

"S*r
3h;

Thus the compliance matrix for the new set of axes is
determined.

Appendix B. Elastic solution
B.1. General theory
The governing partial differential equations of a hol-
low cylinder with body forces absent are given as
[10, p. 129]
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where b
./

are the reduced elastic coefficients defined
in Equation (A33).

The stress distribution in a hollow cylinder sub-
jected to symmetrical loading is symmetrical about
the axis, hence the stress functions / and w will only
depend on the radius r. The system of equations for
/ and w becomes [10, p. 232]
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The general solution of Equations (A21 and A22) is:
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where A, B etc. are constants to be found. In determin-
ing displacements and requiring that they be a
single-valued function of the co-ordinates, it is neces-
sary that [10]

E"0 (A25)

A"Fh (A26)

In a cylindrical co-ordinate system with an axially
symmetric stress distribution, the stress functions are
related to the stress components by [10, p. 128]:

r
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r
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r
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B.2. Elastic constants
It is convenient to define a number of elastic constants
for use in the analysis. The reduced elastic constants in
the jth layer are defined as

b(+)
./

"Cs(+)./
!

s(+)
.3

s(+)
/3

s
33
D (A33)

where m, n"1, 2, 4, 5, 6. Other constants in the jth
layer are:
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where i"12 4.

B.3. Solution for stresses
The stresses in the jth layer are obtained from Equa-
tions (A27—32)
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The superscripts or subscripts j indicate the particular
layers. A(+), B(+), etc. are constants to be determined
from the boundary conditions.

B.4. Solution for strains
Strains are related to stresses by Equations (A15 and
A16). Substituting for stresses from Equations
(A47—A52) and using the constants in section (B.2) the
strains are obtained as:

e(+)
33
"B(+)[g(+)

2
]
1
rj

+~1#C(+)[g(+)
3

]
1
r~j

+~1

#D(+)[g(+)
4

]
1
r#F(+)[g(+)

1
]
1

(A53)

e(+)hh"B(+)[g(+)
2

]
2
rj

+~1#C(+)[g(+)
3

]
2
r~j

+~1

#D(+)[g(+)
4

]
2
r#F(+)[g(+)

1
]
2

(A54)
5433



e(+)
;;
"B(+)[g(+)

2
]
3
rj

+~1#C(+)[g(+)
3

]
3
r~j

+~1

#D(+)[g(+)
4

]
3
r#F(+)[g(+)

1
]
3

(A55)

e(+)h;
"B(+)[g(+)

2
]
4
rj

+~1#C(+)[g(+)
3

]
4
r~j

+~1

#D(+)[g(+)
4

]
4
r#F(+)[g(+)

1
]
4

(A56)

e(+)
3;
"0 (A57)
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B.5. Radial and axial displacements
In cylindrical co-ordinates, displacement in the jth
layer is related to strain by [22, p. 342]:
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In the case of a symmetrical stress distribution, the
terms which depend on h are zero. From Equation
(A60) the radial displacement in layer j can be ex-
pressed as:
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Substituting for ehh from Equation (A54) gives the final
expression for u
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From Equation (A61) the axial displacement can be
expressed as:
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B.6. Boundary conditions
The boundary conditions for the radial and tangential
stress at the inner surfaces are:
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At the contact surfaces of adjacent layers, the fol-
lowing stress and displacement relationships must
hold
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Integrating the axial stress across the section gives the
applied axial load:
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The shear stress in the fibre is related to the applied
moment by:
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B.7. Construction of the matrix
Using the boundary conditions of Equations
(A67—A74) leads to a set of simultaneous equations
best solved by matrix algebra.

A matrix M is defined such that
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M is structured according to Table IV.
From Equation (A67), the condition for radial stress

at the inner radius gives:
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leading to row 1 of M defined as
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and from Equation (A68) the condition for radial
stress at the outer radius gives:
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leading to row 2
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From Equation (A69), for j"1 to N!1, the condi-
tion for radial stress at contacting surfaces gives:
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Rows 3 to N#1 are therefore
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from Equation (A70), for j"1 to N!1 the condition
for radial displacement at contacting surfaces gives:
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rows N#2 to 2N!1 are
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TABLE IV Terms in the matrix

Rows Conditions satisfied Equation

1 to 2 Boundary conditions for radial stress at inner and outer surfaces (A67) and (A68)
3 to N#1 Radial stress compatibility betweeen adjacent surfaces (A69)
N#2 to 2N Radial displacement compatibility between adjacent surfaces (A70)
2N#1 to 3N!1 Shear stress compatibility between adjacent surfaces (A71)
3N to 4N!2 Axial displacement compatibility between adjacent surfaces (A72)
4N!1 Conditions for axial moment (A74)
4N Axial stresses summed across section give axial load (A73)
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from Equation (A71), for j"1 to N!1 the condition
for shear stress at contacting surfaces gives:
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thus for rows 2N#1 to 3N!1
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from Equation (A72), for j"1 to N!1 the condition
for axial load gives:
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rows 3N to 4N!2 are
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from Equation (A74), for j"1 to N we have, for a fibre
free to rotate;
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the terms of row 4N!1 are
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finally, the axial force balance from Equation (A73)
gives for j"1 to N
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so row 4N is defined by
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M
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(r2
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+
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Equation (A75) can now be solved to give the various
constants A, B etc. Explicit expressions for stress,
strain and displacements are therefore determined
from Equations A47—A52 and the behaviour of the
structure can be examined as a function of fibre wind-
ing angles and loading under axial load, torsion, and
internal and external pressure.
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